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LP-spaces for p € [1, 00)

Let (2, %, i) be a fixed measure space.

The space of p-th power integrable functions:
LP(u) := {x : Q — F measurable : / Ix(t)|P dp < oo}
Q

together with

pointwise
(x +y)(t) == x(t) + y(t), (Ax)(t) == Ax(t) operations
where x,y € LP(u), A € F, is a linear space over F = R, C.

There is a natural “norm” on LP(u) given by

el = (J ey )

T I=

Rem: ||x||, = 0 <= pu({t € Q: x(t) £0}) =0 €L x "% ]
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Theorem (Hb6lder’s inequality)
For 1 < p,q < oo such that % + % =1 and for x € LP(u), y € L9(p)

[x - ylln < [Ix[lp - [I¥llqs
that is

S{’Xﬂdﬂ < <£ |x|P du>; <f ly|9 du>;

Q

| |
Equality holds <= |x|P and |y|9 are linearly dependent f-a-e:
(there are a, B € R, (a, 8) # (0,0), such that a|x|? = Bly|? p-a.e.)

Proof: If [|x]p :.0., then x= 0 p-a.e., whence x -y =0 p-a.e logarytm!
assertion holds trivially. Simlarily, for ||y|/q = 0. Hence we may

that ||x|[, [|y|lq # 0. We apply Young’s inequality,
which says that for any numbers a, b > 0 we have

1 1
a-b< =aP + =b9,
p q

and follows from propeties of the logarithm:



Py

In (%a” + %b‘1>

N

y=Ilnx

In(ab) = Ina+1Inb

— 1P L q

=5 In aP + 7 Inb

<in (a5 2
inequality holds by concavity of

logarithm. By removing In one
gets Young’s inequality.

N

1 py 1 q
plna +qlnb

Equality holds < aP = b9 / alp Lap 4 Lpo b‘;
Putting a = ‘l)l(iﬁ” and b = ‘”}EH” we get
t t 1 t)|P 1 t)|9
Sivls <5 W e g e
pllYllq P X||p q Yilq

Integrating the above inequality on both sides

Jo Ix(2) ‘dugl_fﬂ‘x(t)‘pdﬂ-yl Jaly(t ‘qd'u—l l:1.

HXHpHYHq P Ix117 q Iyllg P q
Multiplying both sides by [|x]|s[lyllq we get [Ix - y[ls < [x||p - llyllq-

Moreover, [yl = [l -l llg <= EOF = PO i ae
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I ylln = lIxllp - lyllg == llyllg-|xIP = lIx]I5- y|9 p-ae.
<= |x|P i |y|9 are linearly dependent p-a.e

<" If a|x|P = Bly|9 p-a.e, then integrating af|x|b = Bllylq.
Hence if (a, 8) # (0,0), then Iyl [xP? = x5~ [y]? prac.

Theorem (Minkowski’s inequality)
Forany p > 1 and x,y € LP(u)

Ix + yllo < lIxllo + llyllp-

Proof: For p = 1 the proof is easy:

trian. ine

Ix+yli= [Ix+ylde < = [IxI+lyldp= [|xdu+ [lyldu
Q Q Q Q

= [Ix[l + [Iy 1]z

Assume than that p > 1. Let g:=p/(p—1),s01/p+1/g=1.
We will now apply Holder’s inequality!
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Ix+ylo= Jolx+ylPdu= [glx+y|-Ix+ylP~tdu
trian. |neq 1 1
Jo x| - Ix+ylPdu+ o ly] - [x +y[P~t du
Halder x2
< Ixllp - (Jo Ix + yl9e~ 1)dﬂ)

+ lyllp - (fg Ix + y[9PDdp) e

q(p -1)=
P Xl - X + v BT+ llyllo - l1x + 115

= (Ixllp + llyllo) - x + ¥ 115/

Divididing both sides by Hx+y||p/q and using that p — p/q = 1 we get

+
o+l = lx 115777 = 258 < il + Iy =

Convention:

In the space LP(u) we identify functions that are equal p-a.e.

(formally, the elements of LP(u) are equivalence classes for y s x).
Hence (LP(u), | - ||p) is a normed space!
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Thm. LP(u) is a Banach space for any p € [1, 00). J

Proof: Let {x,}72; C LP(u) be Cauchy. By passing to a subsequence
we may assume that ||x, — xm||p < 2 for m > n. 0

We show that the set Lem. Lecture 1
A={t € Q :VYnInan |xn(t) — xat1(t)| = 1/2"}

has measure zero and that {x,}5%, is pointwise convergent on Q\ A.

Notice that A= [ (J An, where A, = {t: [xa(t) — xp1(t)| > ).

N=1 n=N
Moreover
w1(An) < [a o = Xn111P dpp < lxo = xni1llp < 72
2np,u( A Xn Xn+1 ,U Xn Xn+1 p XX znp>
N e —
=(1/27)p
whence p(A,) < 2np Hence
(o, ¢] o 1
w(A) < UA,, Z (An) < 2Tp—>07 ‘when N — oo
N=n n=N tail of the covergent series

Thus ,u(A) = 0.
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teQ \ A<— HNV,,>N |X,,(t) — Xn+1(t)| < %
= InVmznsn [xa(t) — xm(t) < 3 ZF 770,
k_

Hence for t € Q\ A the sequence {x,(t)}°°; is Cauchy, and therefore
convergent. Put x(t) := lim,_c xn(t), when t € Q\ A, and x(t) =0,
when t € A. Then x, 28 X
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t€ Q\ A<= InVisn [xa(t) — x0p1(t)] < 2

n, I77Q’XL

= INVmznzn [Xa(t) — Xm(t)] < Z 0.

Hence for t € Q\ A the sequence {x,(t)}°°; is Cauchy, and therefore
convergent. Put x(t) := lim,_c xn(t), when t € Q\ A, and x(t) =0,

when t € A. Then x, =5 x. We show the convergence in norm:

Ix = xall? = /Q x(8) ~ xa(£)|P dja = /Q lim [xin(£) — xa(£)[P dp

\A m—0o0

Fatou

< Iiminf/]xm—xnpd,u sup ([0 —xml5 < (1/4)P" — 0.

m—0o0
Hence xp 12 x. As |Ix]lp < IIx — Xallp + [Xallp < 00, x € LP(1)). M

Remark. It follows from the proof above that

[I1lp p-ae
Xp — X — H{Xnk}fo1 Xp, — X.

. ||'Hp p-a.e
However, in general x, — x Xp —> X. 0



Ex. (wandering hump) On the space LP[0, 1] := LP()), where X is
the length on [0, 1] let’s set k-element sequences x,-(k) =1

[Ik17£),
i=1,..,k k&N, into one sequence {x,}7:
X T2 T3
1 oot ! T
" =iy,
X =T 1),
1 1 , X = ]l[%,l)
x Ts =
4 F 1y, X8 ]l[%%)
1T
. o xg =1z gy
T

Then x, 112 0, because [[x*)][, = (fip 1y Ijis 4y AP = (1/K)1P — 0
when k — co. But for any t € [0,1) the sequence {xn(t)}52, is
divergent (it has two limit points 0 and 1). Thus x, 75 0.
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Integral over the counting measure is the sum!
Sequences are functions on N or {1, ..., n}!

Ex. If Q = N and pu is the counting measure, then LP(u),
p € [1,00), is the space of sequences summable in the p-th
power:

= {x = (x(1), .o x(n), ) € TV : o |x(K)|P < oo}

with coordinate-wise operations and the norm
1

el = (£ o)’

Ex. If Q ={1,...,n} and p counting measure, then LP(p) = F" is

the n-th dimensional Banach space with the norm
1

el i= (£ tP)’
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Indicator functions of sets with finite measure span the linear
space of integrable simple functions

E(u) :=span{la, : A € L, u(Ax) < oo}

n y34
— {ZYk]lAk :ykGIF,u(Ak)<oo} 2 — _

k=1

va t —

<+

R A A
Prop. For each p € [1,4+00), (1) is a dense subspace of LP(1).
Hence LP(u) = S(y)H'”p is the completion of £(1) in the norm

el = ({11 )

Proof: For x € LP(u) there is {x,}52, C &(u) with |x,| < |x|
such that x, — x pointwise. Since |x — x,|P < 2|x|P € L!(u)

w-mmzﬁvm—&mvw

1

P

dominated convergence

> 0 |
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