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Lp-spaces for p ∈ [1,∞)

Let (Ω,Σ, µ) be a �xed measure space.

The space of p-th power integrable functions:

Lp(µ) := {x : Ω→ F measurable :

∫
Ω
|x(t)|p dµ <∞}

together with

(x + y)(t) := x(t) + y(t), (λx)(t) := λx(t)

where x , y ∈ Lp(µ), λ ∈ F,

(
pointwise
operations

)
is a linear space over F = R,C.

There is a natural �norm� on Lp(µ) given by

‖x‖p :=

(∫
Ω

|x(t)|p dµ
) 1

p

Rem: ‖x‖p = 0 ⇐⇒ µ({t ∈ Ω : x(t) 6= 0}) = 0
def⇐⇒ x

µ-a.e.
= 0

def⇐⇒
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Theorem (Hölder's inequality)

Hölder

For 1 < p, q <∞ such that 1
p + 1

q = 1 and for x ∈ Lp(µ), y ∈ Lq(µ)

‖x · y‖1 ¬ ‖x‖p · ‖y‖q,

that is ∫
Ω

|xy | dµ ¬
(∫

Ω

|x |p dµ
) 1

p
(∫

Ω

|y |q dµ
) 1

q

Equality holds ⇐⇒ |x |p and |y |q are linearly dependent µ-a.e.

(there are α, β ∈ R, (α, β) 6= (0, 0), such that α|x |p = β|y |q µ-a.e.)

Proof: If ‖x‖p = 0, then x = 0 µ-a.e., whence x · y = 0 µ-a.e and the

assertion holds trivially. Simlarily, for ‖y‖q = 0. Hence we may assume

that ‖x‖p, ‖y‖q 6= 0. We apply Young's inequality

Young

,

which says that for any numbers a, b > 0 we have

a · b ¬ 1

p
ap +

1

q
bq,

and follows from propeties of the logarithm:
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ln(ab) = ln a + ln b
= 1

p ln ap + 1
q ln bq

¬ ln
(
1
pa

p + 1
qb

q
)
,

inequality holds by concavity of
logarithm. By removing ln one

gets Young's inequality.

Equality holds ⇐⇒ ap = bq

Putting a = |x(t)|
‖x‖p and b = |y(t)|

‖y‖q we get

|x(t)y(t)|
‖x‖p‖y‖q

¬ 1

p
· |x(t)|p

‖x‖pp
+

1

q
· |y(t)|q

‖y‖qq
, for all t ∈ Ω.

Integrating the above inequality on both sides∫
Ω |x(t)y(t)| dµ
‖x‖p‖y‖q

¬ 1

p
·
∫

Ω |x(t)|p dµ
‖x‖pp

+
1

q
·
∫

Ω |y(t)|q dµ
‖y‖qq

=
1

p
+

1

q
= 1.

Multiplying both sides by ‖x‖p‖y‖q we get ‖x · y‖1 ¬ ‖x‖p · ‖y‖q.

Moreover, ‖x · y‖1 = ‖x‖p · ‖y‖q ⇐⇒ |x(t)|p
‖x‖pp

= |y(t)|q
‖y‖qq

µ-a.e.
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‖x · y‖1 = ‖x‖p · ‖y‖q ⇐⇒ ‖y‖qq · |x |p = ‖x‖pp · |y |q µ-a.e.
⇐⇒ |x |p i |y |q are linearly dependent µ-a.e

�⇐� If α|x |p = β|y |q µ-a.e, then integrating α‖x‖pp = β‖y‖qq.
Hence if (α, β) 6= (0, 0), then ‖y‖qq · |x |p = ‖x‖pp · |y |q µ-a.e. �

Theorem (Minkowski's inequality)

Minkowski

For any p  1 and x , y ∈ Lp(µ)

‖x + y‖p ¬ ‖x‖p + ‖y‖p.

Proof: For p = 1 the proof is easy:

‖x + y‖1 =
∫
Ω

|x + y | dµ
trian. ineq.
¬

∫
Ω

|x |+ |y | dµ =
∫
Ω

|x | dµ+
∫
Ω

|y | dµ

= ‖x‖1 + ‖y‖1.

Assume than that p > 1. Let q := p/(p − 1), so 1/p + 1/q = 1.

We will now apply Hölder's inequality!
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‖x + y‖pp =
∫

Ω |x + y |p dµ =
∫

Ω |x + y | · |x + y |p−1 dµ
trian. ineq.
¬

∫
Ω |x | · |x + y |p−1 dµ+

∫
Ω |y | · |x + y |p−1 dµ

Hölder x2
¬ ‖x‖p ·

(∫
Ω |x + y |q(p−1)dµ

) 1
q

+ ‖y‖p ·
(∫

Ω |x + y |q(p−1)dµ
) 1

q

q(p−1)=p
= ‖x‖p · ‖x + y‖p/qp + ‖y‖p · ‖x + y‖p/qp

= (‖x‖p + ‖y‖p) · ‖x + y‖p/qp .

Divididing both sides by ‖x + y‖p/qp and using that p − p/q = 1 we get

‖x+y‖pp
‖x+y‖p/qp

¬ ‖x‖p + ‖y‖p.‖x + y‖p−p/qp =‖x + y‖p = �

Convention:

In the space Lp(µ) we identify functions that are equal µ-a.e.

(formally, the elements of Lp(µ) are equivalence classes for y
µ-a.e
= x).

Hence (Lp(µ), ‖ · ‖p) is a normed space!
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Thm. Lp(µ) is a Banach space for any p ∈ [1,∞).

Proof: Let {xn}∞n=1 ⊆ Lp(µ) be Cauchy. By passing to a subsequence

we may assume that ‖xn − xm‖p ¬ 1
4n for m  n.

Lem. Lecture 1We show that the set

A := {t ∈ Ω : ∀N∃n>N |xn(t)− xn+1(t)|  1/2n}
has measure zero and that {xn}∞n=1 is pointwise convergent on Ω \ A.

Notice that A =
∞⋂

N=1

∞⋃
n=N

An, where An := {t : |xn(t)− xn+1(t)|  1
2n }.

Moreover

1
2npµ(An) ¬

∫
An
|xn − xn+1|p︸ ︷︷ ︸
(1/2n)p

dµ ¬ ‖xn − xn+1‖pp ¬ 1
4np ,

whence µ(An) ¬ 1
2np . Hence

µ(A) ¬ µ(
∞⋃

n=N

An) ¬
∞∑

N=n

µ(An) ¬
∞∑

n=N

1

2np
−→ 0, when N →∞

tail of the covergent series

Thus µ(A) = 0.
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t ∈ Ω \ A⇐⇒ ∃N ∀nN |xn(t)− xn+1(t)| < 1
2n

=⇒ ∃N ∀mnN |xn(t)− xm(t)| <
m−1∑
k=n

1
2k

n,m→∞−→ 0.

Hence for t ∈ Ω \ A the sequence {xn(t)}∞n=1 is Cauchy, and therefore

convergent. Put x(t) := limn→∞ xn(t), when t ∈ Ω \ A, and x(t) = 0,

when t ∈ A. Then xn
µ-a.e.−→ x .
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t ∈ Ω \ A⇐⇒ ∃N ∀nN |xn(t)− xn+1(t)| < 1
2n

=⇒ ∃N ∀mnN |xn(t)− xm(t)| <
m−1∑
k=n

1
2k

n,m→∞−→ 0.

Hence for t ∈ Ω \ A the sequence {xn(t)}∞n=1 is Cauchy, and therefore

convergent. Put x(t) := limn→∞ xn(t), when t ∈ Ω \ A, and x(t) = 0,

when t ∈ A. Then xn
µ-a.e.−→ x . We show the convergence in norm:

‖x − xn‖pp =

∫
Ω
|x(t)− xn(t)|p dµ =

∫
Ω\A

lim
m→∞

|xm(t)− xn(t)|p dµ

Fatou
¬ lim inf

m→∞

∫
Ω
|xm−xn|p dµ ¬ sup

mn
‖xn−xm‖pp ¬ (1/4)pn −→ 0.

Hence xn
‖·‖p−→ x . As ‖x‖p ¬ ‖x − xn‖p + ‖xn‖p <∞, x ∈ Lp(µ). �

Remark. It follows from the proof above that

xn
‖·‖p−→ x =⇒ ∃{xnk }∞k=1

xnk
µ-a.e−→ x .

However, in general xn
‖·‖p−→ x 6=⇒ xn

µ-a.e−→ x . 9 / 12



Ex. (wandering hump) On the space Lp[0, 1] := Lp(λ), where λ is

the length on [0, 1] let's set k-element sequences x
(k)
i = 1[ i−1

k
, i
k

),

i = 1, ..., k , k ∈ N, into one sequence {xn}∞n=1:

x1 = 1[0,1), x2 = 1[0, 1
2

),

x3 = 1[ 1
2
,1), x4 = 1[0, 1

3
),

x5 = 1[ 1
3
, 2
3

), x6 = 1[ 2
3
,1)

x7 = 1[0, 1
4

), x8 = 1[ 1
4
, 1
2

)

x9 = 1[ 1
2
, 3
4

), x8 = 1[ 3
4
,1)

. . .

Then xn
‖·‖p−→ 0, because ‖x (k)

i ‖p = (
∫

[0,1] 1[ i−1
k
, i
k

) dλ)
1
p = (1/k)1/p → 0

when k →∞. But for any t ∈ [0, 1) the sequence {xn(t)}∞n=1 is

divergent (it has two limit points 0 and 1). Thus xn 6
µ-a.e−→ 0.
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Integral over the counting measure is the sum!
Sequences are functions on N or {1, ..., n}!

Ex. If Ω = N and µ is the counting measure, then Lp(µ),
p ∈ [1,∞), is the space of sequences summable in the p-th
power:

`p :=
{
x = (x(1), ..., x(n), ...) ∈ FN :

∑∞
k=1 |x(k)|p <∞

}
with coordinate-wise operations and the norm

‖x‖p :=

(
∞∑
k=1

|x(k)|p
) 1

p

Ex. If Ω = {1, ..., n} and µ counting measure, then Lp(µ) ∼= Fn is
the n-th dimensional Banach space with the norm

‖x‖p :=

(
n∑

k=1

|x(k)|p
) 1

p
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Indicator functions of sets with �nite measure span the linear
space of integrable simple functions

E(µ) := span{1Ak
: Ak ∈ Σ, µ(Ak) <∞}

=

{
n∑

k=1

yk1Ak
: yk ∈ F, µ(Ak) <∞

}
A1

y1

A2

y2

A3

y3

A4

y4

Prop. For each p ∈ [1,+∞), E(µ) is a dense subspace of Lp(µ).

Hence Lp(µ) = E(µ)
‖·‖p

is the completion of E(µ) in the norm

‖x‖p :=

(∫
Ω

|x(t)|p dµ
) 1

p

Proof: For x ∈ Lp(µ) there is {xn}∞n=1 ⊆ E(µ) with |xn| ¬ |x |
such that xn → x pointwise. Since |x − xn|p ¬ 2|x |p ∈ L1(µ)

‖x − xn‖pp =

∫
Ω

|x(t)− xn(t)|p dµ
dominated convergence

����> 0. �

12 / 12


